Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1294). Services for accessing these data are described at the back of the journal.

References

Ball, R. G. \& Payne, N. C. (1977). Inorg. Chem. 16, 1187-1191.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Fu, T. Y., Liu, Z., Scheffer, J. R. \& Trotter, J. (1994). Tetrahedron Lett. 35, 7593-7596.
Kagan, H. B. (1982). Comprehensive Organometallic Chemistry, Vol. 5, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, ch. 53. New York: Pergamon.
Kyba, E. P., Davis, R. E., Juri, P. N. \& Shirley, K. R. (1981). Inorg. Chem. 20, 3616-3623.
Molecular Structure Corporation (1997a). DTCOLLECT. Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997b). d*TREK. Area Detector Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381 , USA.
Molecular Structure Corporation (1997c). TEXSAN. Single Crysial Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1997). C53, 1579-1580

An $\boldsymbol{\eta}^{6}$-Toluene Complex of Neodymium: $\left[\mathrm{Nd}\left(\eta^{6}-\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{CH}_{3}\right)\left(\mathrm{AlCl}_{4}\right)_{3}\right]$

Qiancai Liu, ${ }^{a} \dagger$ Yong-Hua Lin ${ }^{a}$ and Qi Shen ${ }^{b}$
${ }^{a}$ Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China. E-mail: jqsun@fudan.ac.cn

(Received 20 December 1996; accepted 1 April 1997)

Abstract

The $\mathrm{Nd}^{\text {III }}$ ion in hexa- μ-chloro-1:2 $\kappa^{2} \mathrm{Cl} ; 1: 3 \kappa^{2} \mathrm{Cl} ; 1: 4 \kappa^{2} \mathrm{Cl}$ -hexachloro- $2 \kappa^{2} C l, 3 \kappa^{2} \mathrm{Cl}, 4 \kappa^{2} \mathrm{Cl}-\left[1\left(\eta^{6}\right)\right.$-toluene $]$ trialuminiumneodymium has distorted pentagonal bipyramidal coordination geometry. Five Cl atoms form the equatorial plane, and the toluene ring and the sixth Cl atom occupy the apical sites. The average $\mathrm{Nd}-\mathrm{C}\left(\eta^{6}\right)$ and $\mathrm{Nd}-\mathrm{Cl}$ distances are 2.926 (5) and 2.857 (1) \AA, respectively.

^[\dagger Present address: Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.]

Comment

η^{6}-Arene-lanthanoid complexes have special catalytic properties (Hu, Tian, Shen \& Liang, 1992). We are interested in the chemical behaviour of such complexes when sterically congested ligands are present. During an attempt to synthesize $\left[\mathrm{Nd}\left(\eta^{6}-1,3,5{ }^{-} \mathrm{BuC}_{6} \mathrm{H}_{3}\right)\left(\mathrm{AlCl}_{4}\right)_{3}\right]$ in toluene solution, the title complex, (I), was isolated instead.

(I)

A molecule of (I) (Fig. 1) consists of one Nd atom, one toluene molecule and three aluminium tetrachloride ions. The coordination number of $\mathrm{Nd}^{\text {III }}$ may be regarded as nine provided that toluene is thought to occupy three vertices of the polyhedron. Alternatively, the coordination polyhedron can be viewed as a distorted pentagonal bipyramid. The equatorial plane comprises five Cl atoms ($\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl} 3, \mathrm{Cl} 4$ and Cl 5), with Cl 6 and the centroid of the toluene ring occupying the apical positions. This mode of coordination is similar to those of related $\mathrm{Ln}^{\mathrm{III}}$ compounds (Cotton \& Schwotzer, 1986; Fan, Shen \& Lin, 1989a; Biagini, Lugli \& Millini, 1994) with distorted pentagonal bipyramidal coordination. The equatorial $\mathrm{Nd}-\mathrm{Cl}$ bond lengths are 2.846 (1)2.902 (1) \AA, rather longer than the apical $\mathrm{Nd}-\mathrm{Cl} 6$ distance of $2.799(1) \AA$. Very similar values have been found for the isomorphous and isostructural Sm compound (Fan, Shen \& Lin, 1989b).

Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The synthesis of the title compound was conducted under argon by Schlenk techniques. Crystals were obtained by reac-
tion of $\mathrm{NdCl}_{3}, 1,3,5-{ }^{-} \mathrm{BuC}_{6} \mathrm{H}_{3}$ and AlCl_{3} (molar ratio 1:1:3) in toluene for 30 min at 353 K , followed by crystallization at 268 K .

Crystal data

$\left[\mathrm{Al}_{3} \mathrm{NdCl}_{12}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]$
Mo $K \alpha$ radiation
$M_{r}=742.761$
Monoclinic
$P 2_{1} / n$
$a=9.728$ (3) \AA
$b=19.856(11) \AA$
$c=12.939(4) \AA$
$\beta=103.75(3)^{\circ}$
$V=2427.7(14) \AA^{3}$
$Z=4$
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=2.62-12.63^{\circ}$
$\mu=3.580 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle
$0.44 \times 0.28 \times 0.24 \mathrm{~mm}$
Yellow
$D_{x}=2.032 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Nicolet $R 3 m / E$ diffractom-
4236 reflections with

$$
I>3 \sigma(I)
$$

$R_{\text {int }}=0.017$
$\theta_{\text {max }}=28.0^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 27$
$l=0 \rightarrow 18$
2 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F
$R=0.039$
$w R=0.038$
$S=1.464$
4236 reflections
208 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}(F)+0.0002 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.051$
$\Delta \rho_{\text {max }}=0.46 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.33 \mathrm{e}^{\AA^{-3}}$
(near the Nd atom)
Extinction correction: none Scattering factors from SHELXTL

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Nd}-\mathrm{Cll}$	2.864 (1)	$\mathrm{Nd}-\mathrm{Cl}$	2.999 (6)
$\mathrm{Nd}-\mathrm{Cl2}$	2.902 (1)	$\mathrm{Nd}-\mathrm{C} 2$	2.910 (5)
$\mathrm{Nd}-\mathrm{Cl} 3$	2.857 (1)	$\mathrm{Nd}-\mathrm{C} 3$	2.879 (5)
$\mathrm{Nd}-\mathrm{Cl} 4$	2.846 (1)	$\mathrm{Nd}-\mathrm{C} 4$	2.871 (5)
$\mathrm{Nd}-\mathrm{Cl} 5$	2.875 (1)	Nd-C5	2.923 (5)
$\mathrm{Nd}-\mathrm{Cl} 6$	2.799 (1)	$\mathrm{Nd}-\mathrm{C} 6$	2.976 (6)
$\mathrm{ClI}-\mathrm{Nd}-\mathrm{Cl} 4$	69.8 (1)	$\mathrm{Cl} 2-\mathrm{Nd}-\mathrm{Cl} 4$	69.4 (1)
$\mathrm{ClI}-\mathrm{Nd}-\mathrm{Cl} 5$	69.4 (1)	$\mathrm{Cl} 3-\mathrm{Nd}-\mathrm{Cl} 5$	71.7 (1)
$\mathrm{Cll}-\mathrm{Nd}-\mathrm{Cl} 6$	81.2 (1)	$\mathrm{Cl} 3-\mathrm{Nd}-\mathrm{Cl} 6$	72.2 (1)
$\mathrm{Cl} 2-\mathrm{Nd}-\mathrm{Cl} 3$	73.7 (1)		

The main program used was SHELXTL (Sheldrick, 1984). The structure was solved by the Patterson method and refined by least-squares calculations, initially with isotropic and finally with anisotropic displacement parameters for the non-H atoms. H atoms were not observed in difference maps but were placed in the calculated positions and assigned an isotropic displacement parameter $U_{\text {iso }}$ of $0.08 \AA^{2}$.

[^1]
References

Biagini, P., Lugli, G. \& Millini, R. (1994). Gazz. Chim. Ital. 124, 217-225.
Cotton, F. A. \& Schwotzer, W. (1986). J. Am. Chem. Soc. 108, 46574658.

Fan, B., Shen, Q. \& Lin, Y. (1989a). J. Organomet. Chem. 377, 5158.

Fan. B., Shen. Q. \& Lin. Y. (1989b). Youji Huaxue (Chin. J. Org. Chem.), 9, 414-416.
Hu. J., Tian. H., Shen, Q. \& Liang. H. (1992). Chin. Sci. Bull. 37, 566-570.
Sheldrick, G. M. (1984). SHELXTL Users Manual. Revision 4.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1580-1583

Piperazine (and Derivatives) Platinum(II) Complexes: trans-Bis(N-methylpiperazineN, N^{\prime})platinum(II) Dichloride Tetrahydrate

Armando Marzotto, ${ }^{a}$ Dore Augusto Clemente ${ }^{b}$ and Giovanni Valle ${ }^{c}$

Abstract

${ }^{a}$ Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università degli Studi di Padova, Via Loredan n. 4, I-35I3I Padova, Italy, ${ }^{b}$ Dipartimento di Ingegneria dei Materiali e Chimica Applicata, Università degli Studi di Trieste, Via Valerio n. 2, I-34127 Trieste, Italy, and 'Centro di Studio sui Biopolimeri, CNR, Università degli Studi di Padova, Via Marzolo n. 2, I-35I31 Padova, Italy: E-mail: marzotto@chim01.chin.unipd.it

(Received 26 March 1997; accepted 19 May 1997)

Abstract

The title compound, trans- $\left[L_{2} \mathrm{Pt}^{\mathrm{ll}}\right]^{2+} .2 \mathrm{Cl}^{-} .4 \mathrm{H}_{2} \mathrm{O},(L=$ N-methylpiperazine $),\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{Cl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$, has been synthesized in the course of our work on complexes formed by the Pt^{2+} ion with piperazine derivatives. X-ray diffraction analysis showed that two N-methylpiperazine molecules bind one Pt^{2+} ion in such a way that the two methyl groups lie in opposite directions with respect to the Pt atom. The coordination around the Pt atom is square planar with four N atoms occupying the coordination sites, and the coordination plane is perfectly planar because the Pt atom lies on a centre of symmetry. This type of coordination imposes a boat conformation on the six-membered N-methylpiperazine ring. As found in other N-methylpiperazine complexes, the molecule has a local mirror plane coincident with the square-planar coordination plane and nearly bisecting the piperazine six-membered ring.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1314). Services for accessing these data are described at the back of the journal.

