Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1294). Services for accessing these data are described at the back of the journal.

References

- Ball, R. G. & Payne, N. C. (1977). Inorg. Chem. 16, 1187-1191.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Fu, T. Y., Liu, Z., Scheffer, J. R. & Trotter, J. (1994). Tetrahedron Lett. 35, 7593–7596.
- Kagan, H. B. (1982). Comprehensive Organometallic Chemistry, Vol. 5, edited by G. Wilkinson, F. G. A. Stone & E. W. Abel, ch. 53. New York: Pergamon.
- Kyba, E. P., Davis, R. E., Juri, P. N. & Shirley, K. R. (1981). Inorg. Chem. 20, 3616–3623.
- Molecular Structure Corporation (1997a). DTCOLLECT. Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997b). d*TREK. Area Detector Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1997c). TEXSAN. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1997). C53, 1579-1580

An η^6 -Toluene Complex of Neodymium: [Nd(η^6 -C₆H₅CH₃)(AlCl₄)₃]

QIANCAI LIU,^a[†] YONG-HUA LIN^a AND QI SHEN^b

^aChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and ^bDepartment of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China. E-mail: jqsun@fudan.ac.cn

(Received 20 December 1996; accepted 1 April 1997)

Abstract

The Nd^{III} ion in hexa- μ -chloro-1:2 $\kappa^2 Cl$;1:3 $\kappa^2 Cl$;1:4 $\kappa^2 Cl$ -hexachloro-2 $\kappa^2 Cl$, 3 $\kappa^2 Cl$, 4 $\kappa^2 Cl$ -[1(η^6)-toluene]trialuminiumneodymium has distorted pentagonal bipyramidal coordination geometry. Five Cl atoms form the equatorial plane, and the toluene ring and the sixth Cl atom occupy the apical sites. The average Nd—C(η^6) and Nd—Cl distances are 2.926 (5) and 2.857 (1) Å, respectively.

Comment

 η^6 -Arene–lanthanoid complexes have special catalytic properties (Hu, Tian, Shen & Liang, 1992). We are interested in the chemical behaviour of such complexes when sterically congested ligands are present. During an attempt to synthesize [Nd(η^6 -1,3,5-'BuC₆H₃)(AlCl₄)₃] in toluene solution, the title complex, (I), was isolated instead.

A molecule of (I) (Fig. 1) consists of one Nd atom, one toluene molecule and three aluminium tetrachloride ions. The coordination number of Nd^{III} may be regarded as nine provided that toluene is thought to occupy three vertices of the polyhedron. Alternatively, the coordination polyhedron can be viewed as a distorted pentagonal bipyramid. The equatorial plane comprises five Cl atoms (Cl1, Cl2, Cl3, Cl4 and Cl5), with Cl6 and the centroid of the toluene ring occupying the apical positions. This mode of coordination is similar to those of related Ln^{III} compounds (Cotton & Schwotzer, 1986; Fan, Shen & Lin, 1989a; Biagini, Lugli & Millini, 1994) with distorted pentagonal bipyramidal coordination. The equatorial Nd-Cl bond lengths are 2.846(1)-2.902 (1) Å, rather longer than the apical Nd-Cl6 distance of 2.799(1) Å. Very similar values have been found for the isomorphous and isostructural Sm compound (Fan, Shen & Lin, 1989b).

Fig. 1. Molecular structure of (1) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The synthesis of the title compound was conducted under argon by Schlenk techniques. Crystals were obtained by reac-

[†] Present address: Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.

tion of NdCl₃, 1,3,5-^{*i*}BuC₆H₃ and AlCl₃ (molar ratio 1:1:3) in toluene for 30 min at 353 K, followed by crystallization at 268 K.

Crystal data

 $[Al_3NdCl_{12}(C_7H_8)]$ Mo $K\alpha$ radiation $M_r = 742.761$ $\lambda = 0.71069 \text{ Å}$ Monoclinic Cell parameters from 25 reflections $P2_{1}/n$ $\theta = 2.62 - 12.63^{\circ}$ a = 9.728(3) Å $\mu = 3.580 \text{ mm}^{-1}$ b = 19.856(11) Å c = 12.939(4) Å T = 298 KNeedle $\beta = 103.75(3)^{\circ}$ 0.44 \times 0.28 \times 0.24 mm $V = 2427.7 (14) \text{ Å}^3$ Yellow Z = 4 $D_x = 2.032 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Nicolet R3m/E diffractom-	4236 reflections with
eter	$I > 3\sigma(I)$
ω -2 θ scans	$R_{\rm int} = 0.017$
Absorption correction:	$\theta_{\rm max} = 28.0^{\circ}$
ψ scans (SHELXTL;	$h = 0 \rightarrow 13$
Sheldrick, 1984)	$k = 0 \rightarrow 27$
$T_{\rm min} = 0.265, T_{\rm max} = 0.642$	$l = 0 \rightarrow 18$
5982 measured reflections	2 standard reflections
5837 independent reflections	every 100 reflections
	intensity decay: none

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.051$
R = 0.039	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.038	$\Delta \rho_{\rm min} = -1.33 \mathrm{e} \mathrm{\AA}^{-3}$
S = 1.464	(near the Nd atom)
4236 reflections	Extinction correction: none
208 parameters	Scattering factors from
H atoms not refined	SHELXTL
$w = 1/[\sigma^2(F) + 0.0002F^2]$	

Table 1. Selected geometric parameters (Å, °)

Nd—Cl1	2.864 (1)	Nd—C1	2.999 (6)
Nd—Cl2	2.902 (1)	Nd—C2	2.910 (5)
NdC13	2.857 (1)	Nd—C3	2.879 (5)
NdC14	2.846 (1)	Nd—C4	2.871 (5)
Nd—C15	2.875 (1)	Nd—C5	2.923 (5)
Nd-Cl6	2.799 (1)	Nd—C6	2.976 (6)
CII—Nd—CI4	69.8 (1)	Cl2—Nd—Cl4	69.4 (1)
Cl1-Nd-Cl5	69.4 (1)	C13—Nd—C15	71.7 (1)
C11—Nd—C16	81.2 (1)	Cl3—Nd—Cl6	72.2 (1)
Cl2NdCl3	73.7 (1)		

The main program used was *SHELXTL* (Sheldrick, 1984). The structure was solved by the Patterson method and refined by least-squares calculations, initially with isotropic and finally with anisotropic displacement parameters for the non-H atoms. H atoms were not observed in difference maps but were placed in the calculated positions and assigned an isotropic displacement parameter U_{iso} of 0.08 Å².

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1314). Services for accessing these data are described at the back of the journal.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

References

- Biagini, P., Lugli, G. & Millini, R. (1994). Gazz. Chim. Ital. 124, 217-225.
- Cotton, F. A. & Schwotzer, W. (1986). J. Am. Chem. Soc. 108, 4657–4658.
- Fan, B., Shen, Q. & Lin, Y. (1989a). J. Organomet. Chem. 377, 51– 58.
- Fan, B., Shen, Q. & Lin, Y. (1989b). Youji Huaxue (Chin. J. Org. Chem.), 9, 414–416.
- Hu, J., Tian, H., Shen, Q. & Liang, H. (1992). Chin. Sci. Bull. 37, 566-570.
- Sheldrick, G. M. (1984). SHELXTL Users Manual. Revision 4.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1580-1583

Piperazine (and Derivatives) Platinum(II) Complexes: *trans*-Bis(N-methylpiperazine-N,N')platinum(II) Dichloride Tetrahydrate

Armando Marzotto,^{*a*} Dore Augusto Clemente^{*b*} and Giovanni Valle^c

^aDipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università degli Studi di Padova, Via Loredan n. 4, I-35131 Padova, Italy, ^bDipartimento di Ingegneria dei Materiali e Chimica Applicata, Università degli Studi di Trieste, Via Valerio n. 2, I-34127 Trieste, Italy, and ^cCentro di Studio sui Biopolimeri, CNR, Università degli Studi di Padova, Via Marzolo n. 2, I-35131 Padova, Italy. E-mail: marzotto@chim01.chin.unipd.it

(Received 26 March 1997; accepted 19 May 1997)

Abstract

The title compound, trans- $[L_2Pt^{11}]^{2+}.2Cl^{-}.4H_2O$, (L = N-methylpiperazine), $[Pt(C_5H_{12}N_2)_2]Cl_2.4H_2O$, has been synthesized in the course of our work on complexes formed by the Pt²⁺ ion with piperazine derivatives. X-ray diffraction analysis showed that two *N*-methylpiperazine molecules bind one Pt^{2+} ion in such a way that the two methyl groups lie in opposite directions with respect to the Pt atom. The coordination around the Pt atom is square planar with four N atoms occupying the coordination sites, and the coordination plane is perfectly planar because the Pt atom lies on a centre of symmetry. This type of coordination imposes a boat conformation on the six-membered N-methylpiperazine ring. As found in other N-methylpiperazine complexes, the molecule has a local mirror plane coincident with the square-planar coordination plane and nearly bisecting the piperazine six-membered ring.